extension | φ:Q→Aut N | d | ρ | Label | ID |
C22.1(C22×Dic3) = C24.49D6 | φ: C22×Dic3/C2×Dic3 → C2 ⊆ Aut C22 | 48 | | C2^2.1(C2^2xDic3) | 192,1357 |
C22.2(C22×Dic3) = C12.76C24 | φ: C22×Dic3/C2×Dic3 → C2 ⊆ Aut C22 | 48 | 4 | C2^2.2(C2^2xDic3) | 192,1378 |
C22.3(C22×Dic3) = Dic3×C4○D4 | φ: C22×Dic3/C2×Dic3 → C2 ⊆ Aut C22 | 96 | | C2^2.3(C2^2xDic3) | 192,1385 |
C22.4(C22×Dic3) = C6.1442+ 1+4 | φ: C22×Dic3/C2×Dic3 → C2 ⊆ Aut C22 | 96 | | C2^2.4(C2^2xDic3) | 192,1386 |
C22.5(C22×Dic3) = C2×C12.D4 | φ: C22×Dic3/C22×C6 → C2 ⊆ Aut C22 | 48 | | C2^2.5(C2^2xDic3) | 192,775 |
C22.6(C22×Dic3) = C2×C23.7D6 | φ: C22×Dic3/C22×C6 → C2 ⊆ Aut C22 | 48 | | C2^2.6(C2^2xDic3) | 192,778 |
C22.7(C22×Dic3) = C2×C12.10D4 | φ: C22×Dic3/C22×C6 → C2 ⊆ Aut C22 | 96 | | C2^2.7(C2^2xDic3) | 192,785 |
C22.8(C22×Dic3) = (C6×D4).16C4 | φ: C22×Dic3/C22×C6 → C2 ⊆ Aut C22 | 48 | 4 | C2^2.8(C2^2xDic3) | 192,796 |
C22.9(C22×Dic3) = (C6×D4)⋊10C4 | φ: C22×Dic3/C22×C6 → C2 ⊆ Aut C22 | 48 | 4 | C2^2.9(C2^2xDic3) | 192,799 |
C22.10(C22×Dic3) = C6.422- 1+4 | φ: C22×Dic3/C22×C6 → C2 ⊆ Aut C22 | 96 | | C2^2.10(C2^2xDic3) | 192,1371 |
C22.11(C22×Dic3) = C2×C4×C3⋊C8 | central extension (φ=1) | 192 | | C2^2.11(C2^2xDic3) | 192,479 |
C22.12(C22×Dic3) = C2×C42.S3 | central extension (φ=1) | 192 | | C2^2.12(C2^2xDic3) | 192,480 |
C22.13(C22×Dic3) = C4×C4.Dic3 | central extension (φ=1) | 96 | | C2^2.13(C2^2xDic3) | 192,481 |
C22.14(C22×Dic3) = C2×C12⋊C8 | central extension (φ=1) | 192 | | C2^2.14(C2^2xDic3) | 192,482 |
C22.15(C22×Dic3) = C42.285D6 | central extension (φ=1) | 96 | | C2^2.15(C2^2xDic3) | 192,484 |
C22.16(C22×Dic3) = Dic3×C42 | central extension (φ=1) | 192 | | C2^2.16(C2^2xDic3) | 192,489 |
C22.17(C22×Dic3) = C42⋊6Dic3 | central extension (φ=1) | 192 | | C2^2.17(C2^2xDic3) | 192,491 |
C22.18(C22×Dic3) = C4×C4⋊Dic3 | central extension (φ=1) | 192 | | C2^2.18(C2^2xDic3) | 192,493 |
C22.19(C22×Dic3) = Dic3×C22⋊C4 | central extension (φ=1) | 96 | | C2^2.19(C2^2xDic3) | 192,500 |
C22.20(C22×Dic3) = Dic3×C4⋊C4 | central extension (φ=1) | 192 | | C2^2.20(C2^2xDic3) | 192,533 |
C22.21(C22×Dic3) = C12.5C42 | central extension (φ=1) | 96 | | C2^2.21(C2^2xDic3) | 192,556 |
C22.22(C22×Dic3) = D4×C3⋊C8 | central extension (φ=1) | 96 | | C2^2.22(C2^2xDic3) | 192,569 |
C22.23(C22×Dic3) = Q8×C3⋊C8 | central extension (φ=1) | 192 | | C2^2.23(C2^2xDic3) | 192,582 |
C22.24(C22×Dic3) = C2×C12.55D4 | central extension (φ=1) | 96 | | C2^2.24(C2^2xDic3) | 192,765 |
C22.25(C22×Dic3) = C2×C6.C42 | central extension (φ=1) | 192 | | C2^2.25(C2^2xDic3) | 192,767 |
C22.26(C22×Dic3) = C4×C6.D4 | central extension (φ=1) | 96 | | C2^2.26(C2^2xDic3) | 192,768 |
C22.27(C22×Dic3) = C23×C3⋊C8 | central extension (φ=1) | 192 | | C2^2.27(C2^2xDic3) | 192,1339 |
C22.28(C22×Dic3) = C22×C4.Dic3 | central extension (φ=1) | 96 | | C2^2.28(C2^2xDic3) | 192,1340 |
C22.29(C22×Dic3) = Dic3×C22×C4 | central extension (φ=1) | 192 | | C2^2.29(C2^2xDic3) | 192,1341 |
C22.30(C22×Dic3) = C22×C4⋊Dic3 | central extension (φ=1) | 192 | | C2^2.30(C2^2xDic3) | 192,1344 |
C22.31(C22×Dic3) = C2×C23.26D6 | central extension (φ=1) | 96 | | C2^2.31(C2^2xDic3) | 192,1345 |
C22.32(C22×Dic3) = C2×Q8×Dic3 | central extension (φ=1) | 192 | | C2^2.32(C2^2xDic3) | 192,1370 |
C22.33(C22×Dic3) = C2×D4.Dic3 | central extension (φ=1) | 96 | | C2^2.33(C2^2xDic3) | 192,1377 |
C22.34(C22×Dic3) = C12⋊7M4(2) | central stem extension (φ=1) | 96 | | C2^2.34(C2^2xDic3) | 192,483 |
C22.35(C22×Dic3) = C42.270D6 | central stem extension (φ=1) | 96 | | C2^2.35(C2^2xDic3) | 192,485 |
C22.36(C22×Dic3) = C42⋊10Dic3 | central stem extension (φ=1) | 192 | | C2^2.36(C2^2xDic3) | 192,494 |
C22.37(C22×Dic3) = C42⋊11Dic3 | central stem extension (φ=1) | 192 | | C2^2.37(C2^2xDic3) | 192,495 |
C22.38(C22×Dic3) = C42⋊7Dic3 | central stem extension (φ=1) | 192 | | C2^2.38(C2^2xDic3) | 192,496 |
C22.39(C22×Dic3) = C24.58D6 | central stem extension (φ=1) | 96 | | C2^2.39(C2^2xDic3) | 192,509 |
C22.40(C22×Dic3) = C24.19D6 | central stem extension (φ=1) | 96 | | C2^2.40(C2^2xDic3) | 192,510 |
C22.41(C22×Dic3) = C4⋊C4⋊5Dic3 | central stem extension (φ=1) | 192 | | C2^2.41(C2^2xDic3) | 192,539 |
C22.42(C22×Dic3) = C4⋊C4⋊6Dic3 | central stem extension (φ=1) | 192 | | C2^2.42(C2^2xDic3) | 192,543 |
C22.43(C22×Dic3) = C42.43D6 | central stem extension (φ=1) | 96 | | C2^2.43(C2^2xDic3) | 192,558 |
C22.44(C22×Dic3) = C42.187D6 | central stem extension (φ=1) | 96 | | C2^2.44(C2^2xDic3) | 192,559 |
C22.45(C22×Dic3) = C42.47D6 | central stem extension (φ=1) | 96 | | C2^2.45(C2^2xDic3) | 192,570 |
C22.46(C22×Dic3) = C12⋊3M4(2) | central stem extension (φ=1) | 96 | | C2^2.46(C2^2xDic3) | 192,571 |
C22.47(C22×Dic3) = C42.210D6 | central stem extension (φ=1) | 192 | | C2^2.47(C2^2xDic3) | 192,583 |
C22.48(C22×Dic3) = C24.6Dic3 | central stem extension (φ=1) | 48 | | C2^2.48(C2^2xDic3) | 192,766 |
C22.49(C22×Dic3) = C24.74D6 | central stem extension (φ=1) | 96 | | C2^2.49(C2^2xDic3) | 192,770 |
C22.50(C22×Dic3) = C24.75D6 | central stem extension (φ=1) | 96 | | C2^2.50(C2^2xDic3) | 192,771 |
C22.51(C22×Dic3) = C24.29D6 | central stem extension (φ=1) | 96 | | C2^2.51(C2^2xDic3) | 192,779 |
C22.52(C22×Dic3) = C24.30D6 | central stem extension (φ=1) | 96 | | C2^2.52(C2^2xDic3) | 192,780 |
C22.53(C22×Dic3) = (C6×Q8)⋊7C4 | central stem extension (φ=1) | 192 | | C2^2.53(C2^2xDic3) | 192,788 |
C22.54(C22×Dic3) = (C6×D4).11C4 | central stem extension (φ=1) | 96 | | C2^2.54(C2^2xDic3) | 192,793 |
C22.55(C22×Dic3) = C25.4S3 | central stem extension (φ=1) | 48 | | C2^2.55(C2^2xDic3) | 192,806 |